The recent drop in the price of SuperPET ($995 at

mail-order houses) has caused some owners to panic.

' (Fire Sale! Selling out inventory! The end of all

production!). Nonsense. Did anyone who bought a Commodore 64 panic when prices

dropped to less than $200? Commodore obviously is employing low prices to smash

its competitors--and has smashed them (Apple, caught between IBM and Commodore,

has closed a plant and laid off staff at its main operationj VICTOR is about out

of business; Texas Instruments has quit on personal computers; Atari is in deep

trouble, and Coleco has the same problem Eve had: Adam). Commodore continues to

value school installations; these have first priority on any machine. SuperPET,

at $995, is far cheaper than its rivals, Apple and IBM PC. Commodore well knows

that those who learn on a Commodore machine will favor that machine (or brand)
after they leave school, and wants to capture the next generation of customers.

Walt Kutz, U.S. Manager of Business Machines (he was U.S. manager for SuperPET)
called a few weeks back and assured us that SuperPET would remain in production.
‘Those who see in the recent drop in price of SuperPET the impending doom of the
machine might well ask themselves: would I, if managing Commodore, give schools
a choice of 8032, VIC or the 64, and abandon universities to Apple and IBM?
OO
JANUARY MEMBER, YOUR MEMBERSHIP EXPIRES WITH THIS ISSUE!
You won't get a bill or another notice. If the address label, this issue, reads
e:1-nn-83 or less (nn is any day), this is your last issue. The 'e:' stands for
'entry date'--not for expiration. Any date ending in -82 means you are no longer
a member of ISPUG. So please send in yearly dues of $15 U.S. for memberships in
North America, or $25.00 if you live elsewhere. Enclose the address label or a
copy and mark the form 'renew'. Send label and check to Secretary, ISPUG, made
out to ISPUG, at 4782 Boston Post Road, Pelham, N.Y. 10803, U.S.A. Canadians: We
found a bank which does not charge to process Canadian checks (to hell with the
one that does!). So send anything negotiable but cash, made out to ISPUG.
L0 020 0.0 . . 0.0.0.0. 0.0 0.0 0.0 0.0 0.0 0 0.0 0000 0.0.0.0.0.0.00.0.0.0.0.0.0,0.0.0.9.9,0.0.0.0.0.0.0.0.0
On Commodore‘'s support of SuperPET: Starting with the February issue (No. 28)
of Commodore Microcomputer, Commodore's own magazine, there'll be a regular
column on SuperPET--written by you know who. Diane LeBold, who edits Commodore,
said she hadn't received material on SuperPET. When we offered to supply some,
she accepted the offer. So there. Any of you who are interested in contributing
to the column (or writing one), get in touch with the Editor at PO Box 411, Hat-
teras, N.C. 27943. We'll send you Commodore's editorial requirements/schedule,
and try to coordinate what we've written with what you plan. We progress.
OO0
YES, WE HAVE VERSION 1.1 SOFTWARE! Through the diligent efforts of our good
Secretary, Paul Skipski, we can at last
lay hands on V1.1 SuperPET software for any ISPUG members who want it. We must,
however, order in a batch; we can't dribble in an order now and then. Prices in-
clude the COBOL manual (sorry, we can't just get update sheets; you get the the
whole package or nothing). For 8050 format, price is $29.95 plus $3.00 shipping
and handling. For 4040, (which requires three disks), price is $6.00 higher. See
totals at left. The package includes update sheets for ALL the
8050: $32.95 U.S. manuals. To help you out, we'll replace the old microBASIC on
4040 $38.95 U.S. the issue disk with patched microBASIC (debugged). There are a
number of major improvements in V1.1, and we strongly urge you
get it if you're still running V1.0. Almost all Gazette programs are written in
version 1.1. If you want V1.1, send a check to the Editor NOW so we can put in
a consolidated order. We'll need about a month to get the material and ship it.

SuperPET Gazette, Vol.I No.11 =156~ December 1983/January 1984

(The 4040 price is based on the fact we can't get language disks in 4040, and so
must convert the 8050s shipped to 4040 and supply the added disks). Order V1.1
now or forever hold your peace. Make checks to ISPUG. Send order to the Editor,
SuperPET Gazette, PO Box 411, Hatteras, N.C. 27943. State format.
SOOI OO O OO OO OO0 OO OOOOOOOOOOOO0
ONCE OVER LIGHTLY We haven't used every brand of disk on the market, but
Miscellaneous Notes have found two that are extremely good: Maxell and 3M;
In two years, we haven't lost the first disk in either
brand, employing two computers week in, week out. A box of Elephants died within
a year, Want disks? Our Secretary can get some brands for members at very low
prices, and supplies other stuff, hardware and software (some for the 64) at
equally low rates. Write him at 4782 Boston Post Road, Pelham, N.Y. 10803 for a
price list., Sample: Maxells (DD,SS) go for $27.00 per box of 10. Beat that. Add
N.Y. sales tax if you live in N.Y. He also can get PAPERCLIP for you (SPET ver-
sion) for $150. He has SPET manuals. Add 3% shipping and handling, all orders.

MODEM The Anchor Mark I RS-232 modem, which runs at 300 baud and sells for a
modest $99.95, does a nice job with SuperPET. No fancy autodial, but after 1984
begins, dialing long distance on Ma Bell will be an exercise in patience.

SORRY! Gary Ratliff commented that Waterloo's mainframe BASIC dcoesn't let you
pass parameters when CHAINing (letter supplment to issue nine), Waterlco sends a
note: "Full-blown Waterloc BASIC for IBM 360s and 370s does allow the passing of
single values of matrices to a CHAINed program. These parameters are referenced
in the CHAINed program with a USE statement." We stand corrected.

NO WORDPRO 6 There will not be a WordPro 6 for SuperPET, according to Ron Pat-
rick of Professional Scoftware. He called and spoke for Harold Dickerman, Product
Manager . The rumor is dead. Oh, well. See PAPERCLIP review, this issue.

UD11 DOES WORK Loren Felten dropped a note and said he has a WordPro ROM in-
stalled in UD11 on a two-bocard, two-switch SuperPET, and WordPro works fine. He
checked and said POKE 61438,0 does not turn it off (that POKE turns off any chip
in U45, the $9000 socket). We prefer U46, on the top board, for $A000 ROMS, as
you don't have to remove the top board to get to U46. U46 works well. We have a
PAPERCLIP chip there; others report that WordPro is okay in that socket.

IMPORTANT: Apparently a lot of new readers (and some old hands) never noticed
the patch for microBASIC V1.1 we published in Vol. 1, p. 38. Without the patch,
mBASIC 1.1 will print a carriage return after the 79th character on a line. The
patch was published (V.1, No. 6), and is on ISPUG disk one as 'patch 2'. Use it!

SORRY ABOUT THAT DEPT. Last issue we published TAB, an ML program to set tabs
from menu, and it works fine, but you probably noticed it makes the menu flicker
twice after it runs. We found out why: library routine GETCHAR_ thirsts for CR's
and won't give up until it gets one. All manner of mad things happen in ML pro-
grams if you do not feed the damned beast its CR. So, stuff the loop at left in-

to TAB.ASM, the assembler file, right after jsr tabset . It

loop not only gets the CR but alsc gobbles up any excess charac-
Jjsr getchar_ ters you may have entered. Beware of GETCHAR in any pro-
cmpb #$0d program if you leave the CR 'ungot'.

until eq

There's a better way to get a single character: use KYPUTB_
from the library, at $DD82. This 'gets' a character from the keyboard without

SuperPET Gazette, Vol.I No.11 -157- December 1983/January 1984

a CR (though it has some tricks of its own: see UDUMP, this issue). In TAB, you
sho:1ld delete the: jsr getchar_and substitute for it the

loop loop shown at left. KYPUTB , as with any 'get', is happy to
Jsr kyputb_ get 2 null, so you must loop until you see a character. You
cmpb #0 must stuff: kyputb_ equ $dd82 into your .asm file, right af-
until ne ter service_ equ $32, so SPET knows where to look. Waterloo

didn't document KYPUTB , but Gary Ratliff did, on page 83 of
issue 7. The character 'got' is found in the B register. Reserve GETCHAR_ for
multi-character strings or to give users a chance to correct input errors.

Last, we said TAB wouldn't interfere with APL or COBOL if you overloaded them in
Bank 15 after using TAB. Well, that's true--if you make origin $9000. We didn't;
we shoved TAB way up to $9f00, and APL didn't know where APL quit and the left-
over shard of TAB started. Origin shouild be ‘$9000 for TAB or any other ML pro-
gram in Bank 15. That low, it is surely overwritten by APL and COBOL. In other
languages/facilities, you needn't change origin to $9000.

LS O O 0 0.0, 0 0 0 0 0 0.0 0. 00 0 0.0.0.0.0.0.0.0.0 00 0 0 0 00 0000000 0000 .0.0.0.0.0.0.0.0,0,0.0.04

USING MACROS IN DEVELOPMENT PROGRAMS Last issue, I wrote about straight-line
Part II : by John A. Toebes, VIII macros and those to which you can pass
145 C Jones Franklin parameters as operands. They are quite
Raleigh, N.C. 27606 simple and easy to use. This issue, we

look at complex macros, and end with a
general macro which will clean up the stack for you. Complex macros are the most
advanced but most useful; you can do almost anything, including some high-level
language constructs.

One I find most useful is CALL.MACRO; it automatically loads parameters, calls a
a routine, and then cleans up the stack. It must be able to accept any number of
parameters (a subroutine may have a large number of them) and then determine how
much space to take from the stack. This last is a problem--the macro processor
doesn't know how many parms* there are. We therefore test each parm to see if
it's null; when we find the null, and if we arrange to count parms, we've solv-
ed the problem. So, let's first look at finding the null parameter. (* I use the
abbreviation 'parm' for 'parameter'.)

Two conditional Assembler directives are most useful: IFC (IF Comparable), and
IFNC (IF Not Comparable). (The 'comparable' means exactly alike. For fuller de-
tails, see p. 138, Development manual.) Both IFC and IFNC take two operands and
compare them. If they are identical, the code following IFC is executed; if they
are not identical, code following IFNC is executed. We simply test each paramet-
er against a null until we find a match. Before I pass to an example, remember
that parms are passed to macros to match a psuedo-variabie, identified in the
macro as '\0, \1...\n'. The first parm is assigned to psuedo-variable \0, the
second to psuedo-variable \1, etc. While it might seem simple to test the parms
against a null, there is a pitfall--the comma, which is a data separator.

If, for example, we pass a single parm '5,X' to a macro as psuedo-variable \1,
and if we test to see if the it is the string TEST, our macro code will be that
at left, top line. 1In operation, our code will compare TEST

IFC TEST,\1 with 5, because 5 is followed by a comma, which excludes the
is seen as following 'X', even though it is part of parm \1. We manage
IFC TEST,5,X to sneak by this comparison through luck, not design. But now

suppose we pass the parm ',S' to psuedo-variable \1 and we
want to compare it to a null. We are in trouble. Our code in the macro again is

SuperpPET Gazette, Vol.I No.11 -158- December 1983/January 1984

shown at left, with the operating comparison below. We compare a prefix null to
a second null, between the two commas--but we wanted to com-

IFC s \1 pare a null with ',S'! The solution is relatively easy. We
is seen as stuff in some periods, and compare them in place of nulls, as
IFC 993 shown in the third set of examples. (First, we'll compare a

leading null to the parm ',S', and then we'll test nulls.)

IFC ey\1. Note the prefix period, and the period which follows the psue-
is seen as do-variable \1. This time, our comparison is valid. We compare
IFC oy 9, the leading period with a null between the two commas. The two

are not comparable, so IFC fails as it should. Now, suppose we
truly have a null parameter for psuedo-variable \1, instead of ',S'--after all,
that was the problem we started with. And lo! Though we compare two periods, the
comparison is valid, and we pass the IFC test. Note that the

IFC eg\le parameter which caused all this trouble is very common:',S'--
is seen as: which means the top value on the stack. We had to find a way
IFC ogie around the preceding comma, and the period is one way. Only if

(null,null) we pass a parm '.,'--which is highly unlikely--will the peri-

iod fail. If you must compare such a parm, you can change the

comparison statement to any character other than a period (if you don't other-
wise use that alternate character).

Before you proceed, please look at CALL MACRO at the end of this article. I will
refer to it many times from here on. The numbers in {} are line numbers, and not
part of the macro. As written, it handles up to six parameters (the maximum you
may pass to any system routine). If you need more, expand it. Here are some ex-
amples of how to use it; in them, your code is in CAPITALS and bold face, while
lower case and '+' show macro-generated code. Note how CALL MACRO first sets the

parameter count (pcount_) to zero {2}, so we can keep track

CALL PUTHL_ of how many bytes we must release from the stack after the
call. In the example left, we want a new line and pass no
+ jsr putnl_ parameters. IFNC {3} fails because we compare two nulls, so

we skip to its ENDC {33} with pcount_ still zero. The macro
generates a JSR at line {34}, and pcount_ is checked at {35}. Since pcount_ is
equal to zero (ifne), no LEAS instruction is generated to adjust the stack.

Let's try again, with a call to PUTCHAR_ to print a space. Again, pcount_ is set

to zero; the first IFNC test is passed (we pass a parm);

CALL PUTCHAR ,#' ' but note the second IFNC fails. We drop down to its cor-

+ 1dd #r esponding ENDC {31}, and emit the LDD \1 found there; it

+ jsr putchar_ loads the #' ' that we passed (all parms to system rou-

tines are passed in the D register); then emits the JSR

at {34}, and as before does not generate the LEAS instruction because pcount_ is

still zero. (If you ask why passing a parameter doesn't increment pcount_, note

that one parameter is passed in the D register, not from the stack. Only when we
pass two parameters or more is the stack involved.)

In the next call, the first two IFNC tests are passed, and pcount_ this time is
incremented. Since we passed only two parms, the third IFNC fails {6}; we drop

3 P1 P2 to its ENDC {28}, emit the LDD {29}, the

CALL OPENF_,#FILENAME, #FILEMODE PSHS D {30} to put P2 on stack; then the
+ pcount_ set 2 LDD for P1 at {32}, and finally the JSR at
+ 1ldd #filemode ;P2 {34}. This time, the test of pcount_ shows
+ pshs D value, and so we emit the LEAS 2,S to adj-

SuperpPET Gazette, Vol.I No.11 -159- December 1983/January 1984

+ ldd #filename ;P1 Jjust the stack. Note we CALL the paramet-
+ Jjsr openf ers in their natural order, P1 and P2, but
+ leas 2,8 the macro gets the nasty chore of putting

the parameters on the stack in inverse or-
der, and of putting P1 into the D register. We begin to see the drudgery we can
avoid with CALL MACRO. The next example shows it even more clearly.

Here, we have one more parm, so pcount_ is set twice, in {5} and {7}; since only
the last setting counts, we are 0.K. Also note there is no limit to the complex-

s P1 P2 P3 ity of the parameters you pass;
CALL FPRINTF_,([3,X]),#STRING,(TEMP+80,Y) the macro spits them out with an
+ pcount set 2 LDD prefix. One warning: if any
+ pcount set 4 of the parms reference things already on the stack,
+ 1dd temp+80,y remember that the stack is adjusted by the PSHS in
+ pshs d the macro, so you'll have to give the stack offsets
+ 1dd #string accordingly. Last, a note: if you've forgotten, the
+ pshs d parentheses left, above, let us pass commas or even
+ 1ldd [3,x] semicolons in a parameter, as we do in P1 and P3,
+ jsr fprintf_ above. Note the amount of code which the macro will
+ leas 4,s write for you from one line in your program.

CALL MACRO is designed, obviously, to handle calls to SuperPET system routines.
It may be shortened if you usually handle fewer than six parms, with an increase
in speed. This macro should be put on disk, and brought into play with a state-
ment at the beginning of your code: j;include <call macro>

{1} call macr ; Call routine, parm 1, parm 2...parm n.

{2} pcount__ set O ; Set stack space to release to zero.

{3} ifnc .,\1. ; Test for first parameter.

{4} ifne .,\2. ; Test for second parameter.

{5} pcount__ set 2 3 Two bytes stack space for second parm.

{6} ifnec .,\3. ; Test for third parm.

{7} pcount set y ; Four bytes stack space for 2nd and 3rd parm.
{8} 1P g \Bs ; Test for fourth parm.

{9} pcount set 6 ; Six bytes stack space for parms 2 thru 4.
{10} ifnec .,\5. ; Test for fifth parm.

{11} pcount__ set 8 ; Eight bytes stack space for parms 2 thru 5.
{12} ifnec .,\6. ; Test for sixth parm.

{13} pcount__ set 10 ; Ten bytes stack space for parms 2 thru 6.
{14} ifne «3\7.; See if given too many parms. Six is maximum.
{15} fail ; Yes, warn of too many parms.

{16} endc

{17} ldd \6 ; Load sixth parameter,

(18} pshs d ; and push it onto the stack.

{19} ende

{20} ldd \5 ; Load fifth parameter,

{21} pshs d ; and push onto stack.

{22} ende

{23} ldd \4 ; Load fourth parameter, etc.

{24} pshs d

{25} endc

{26} ldd \3 ; Load third parameter, etc.

{27} pshs d

{28} ende

SuperpPET Gazette, Vol.I No.11 -160- December 1983/January 1984

{29} ldd \2 ; Load second parameter, etc.

{30} pshs d

{31} ende

{32} 1ldd \1 ;s Load first parameter in D register.
{33} ende

{34} jsr \O 3 Call the system routine.

{35} ifne pcount 3 Any stack space to release?

{36} leas pcount_ ,s ; Yes, remove it.

{37} endc

{38} endm

[Ed. When you remove the line numbers above, be sure to put 'call macr'flush on
the left margin of the screen. And don't leave in the comments! If you do, IFNC
fails; the macro tries to load the stack with five parms no matter how few you
assign, since IFNC sees comments as part of the psuedo-variable on that line.
Second, because macros slow down assembly, you may want to shorten CALL.MACRO to
accept from 3 to 5 parms instead of 6. Last, you can remove the 'fail' IFNC and
ENDC if you don't want to horse around with a 'too many parms' warning.]
19, 0,0.0, 0.0, 0,0.0.0.0.0.0 .0 0.0 0.0.0.9.0.0.0.0.0.0.0.0.90.0.0.0.0.0.0.0.0.0.0.0.0.0.0.00.0.0.0.0.0.0.0.0.0.0.0.0
A NOTE ON HANDLING ASCII In issue 9, we noted the problem of handling ASCII
CODES IN APL codes with []IO set to 1 in APL. Too late for issue
10, we received a note from Dr. Wilson at Waterloo:
"This letter concerns the difficulty people have when using APL in remembering
to take the index origin into account in producing characters like NULL and ESC
by indexing [JAV. For instance, the NULL character is [JAV[1]...with [JIO set to
1ee.y but it is [JAV[O] in origin 0. The BASIC function chr$() is not origin...
dependent.

"The tradeoff is that BASIC requires a second built-in function, asc(), to do
the inverse translation of characters back to numbers, while APL doesn't need
anything but the variable [JAV. If you prefer the two-function approach, just
include in your workspace the functions CHR and ASC which I've 1listed below.
They behave like chr$() and asc().... The results are origin-independent.™

VC « CHR N VN« ASC C
[1] c«lOmo+nN1V [1] ¥« (-010) + D4AVAC V

0ro«1 0ro«1

CHR 97 98 99 ASC 'ABC!
ABC 97 98 99

0ro«o 0ro+«o

CHR 97 98 99 ASC 'ABC!
ABC 97 98 99
OO0 OO0 O OO O OO0 OOOO00
A SUPERPET BULLETIN-BOARD Paul Matzke, PO Box 574, Madison, Wisconsin 53701,

PROGRAM BY PAUL MATZKE has written a program in microBASIC which allows

any SuperPETter to operate a Bulletin Board as a
SYSOP (System Operator). It requires a Hayes Smartmodem for autoanswer, logs all
users, incorporates passwords, delivers mail, and perf~rms the other functions
which Punter boards perform in 6502. Paul says he's had it running in Madison
for some time, and that almost any computer can be on the other end--from Radio
Shack CoCo's to PC's (and, of course, SuperPETs and PETs). We have a report that
it's the best BB in Madison, and runs well at 300 baud.

A disk with instructions, prepared by Paul, is available from him at the address
above, 4040 format. Send a disk in a good mailer plus $1 U.S. (or Canadian coin)

SuperpPET Gazette, Vol.I No.11 -161- December 1983/January 1984

for postage, or send $6.00 and he'll mail a disk to yocu. For 8050 format, send
$6 U.S. to the Editor, SuperPET Gazette, PO Box 411, Hatteras, N.C. 27943, and
we'll send the disk. More software, praise be. Thanks, Paul.
nnnnnAnAnNNNANANANNANNANANNANANNANNNNNANNANNANANNANNANANNNANNANANNANNNNANANNNNNNN
(C) 1984 OO0 THE APL EXCHANGE OO0 STEVE ZELLER

UUUUUUUUUUUUUUUUUUUUULULUULULUUULUULLUUUULUULULLULLULUULULUUUUUUUUUUUULULUULUULUUY
Much of the last issue was devoted to telecommunications tools. Among these were
a terminal package, developed by Waterloo, that functions in APL mode. In this
article, APL tools are presented that will help you communicate with other comp-
uters from the APL workspace without a terminal package. We will see that while
our ability to function as a terminal is impaired, there are other important ad-
vantages to being able to communicate from the APL workspace (WS).

The first step: set the operating characteristics of the serial port. In lieu of
setup from the main menu, the functions SIOINIT and STIMEOUT will do the job.
Then, executing PASSTHRU will allow you to type characters to the serial port.
To return to the WS environment, use the {STOP> key. If you need the ASCII char-
acter set for all or part of the terminal session, type "SETAPL OFF"; return to
APL by typing "setapl on".

VSIOINITL[OIV _ VSTIMEOUT[O]V
[o] SIOINIT BR ;0I0 [o] STIMEQUT SEC ;0I0
[1] AWSETS BAUD RATE ON SERIAL PORT [1] ASETS TIMEOUT ON SERIAL PORT
[2] 0Or0+« [21 (QOro«o
[3] -+(~BRe300,1200)/ERR [3] [AVL,4 2p0 10xSEC] [JPOKE 878+18
L 4] 0 op(61424,BR,96 0) [ISYS 45203 VPASSTHRULOIV
[51 =0 [o] PASSTHRU
L 6] ERR:'222! [11 wJUMPS INTO ~PASS THROUGH MODE
[21 0 0pSYS 45173
VSETAPLLO]V von[Olv
[o] SETAPL B [o] R « ON
[1] WSELECTS APL CHARACTERSET “ON" OR “OFF" [1] R
[21 +(~Be0,1)/ERR VOFFLO1V
[31 0 0p(B+1) [ISYS 45194 L o] R « OFF
[4] =0 [1] R«O
L 5] ERR:'222' (TO SWITCH TO ASCII, TRY: SETAPL OFF)

The prime reascon to be in the APL WS, communicating with a host computer, is not
to use the passthrough mode; rather, it is to drive the serial port from an APL
program. This opens up a whole new range of possibilities in communicating with
host computers that are simply not possible as a terminal. To this end, I cannot
emphasize enough the importance of obtaining an intelligent modem. The examples
below are based on a Hayes Smartmodem. For example, to dial (by touch-tone), the
number 999-1234, you send the ASCII string "AT DT9991234" to the serial port. If
you add a semicolon to the end of the string, the modem returns to command mode,
after it has made a connection. With this feature, you may develop an APL-based
"Rolodex". Both modem and telephone can be connected (with a Y connector) to the
phone jack at the same time: use APL and the modem to place the call; then pick
up the phone and talk!

There are other applications as well. I now pay all recurring bills with this
type of modem., Several banks and S&L's here let you pay bills via touch-tone
dialing. With the payee codes stored in a WS, I use the modem to dial the compu-

SuperPET Gazette, Vol.I No.11 -162- December 1983/January 1984

ter, and then dial the sign-on codes, payee codes and amounts until I've paid my
bills. The key is to control the modem with an APL program. Note that the modem
expects ASCII (more exactly, the sequence of binary codes that correspond to the
ASCII characters). In APL mode, you need to check on the correspondence between
APL and ASCII characters before you decide which APL character to send; refer to
the character code tables in Appendix C, the APL manual. In APL, most keys send
the required ASCII binary codes if used "as if" they were still ASCII keys. But
not all! For example, while SHIFT 3 will send '#' in ASCII, the asterisk '¥*' has
moved to the SHIFT 8 key! To assure correct translation, first find the ASCII
character you wish to send in Appendix Table C-3 (p. 107). Note its hexadecimal
code; then turn to Appendix Table C-1. Use the APL character with the same hex
code.

The set of APL functions below will dial up a host computer from the APL WS. I
assume that the host needs only two items: (1) a log-on message and (2) a pass-
word. The function LOGON sets up the serial port, using the functions 1listed
above, and opens the serial port. The first message sent to the serial port is
modem-specific; it tells the Hayes modem not to eche characters back to SPET.
(This isn't really needed unless in passthrough mode). Executed next are three
APL functions that dial the host computer and provide the log-on and the pass-
word. I prefer to keep these as separate APL functions in the WS, but this is
largely a matter of taste; it is always useful when an "emergency" arises.

VLOGONLO]V VOPENSERIALLOIV
[o] LOGON 3I;ANS;CMDS [o] OPENSERIAL
[1] RROUTINE TO DIAL UP IPSA [1] 'SERIAL' (CREATE 10
[2] SIOINIT 1200 YNOECHO[O]v
[3] STIMEOUT 15+I«0 [o] NOECHO
[4] OPENSERIAL [11 ‘o~ €0' OPUT 10
[5] NOECHO VDIALHOSTLOIV
[6] CMDS+3 8p'DIALHOSTSIGNON PASSWORD"' [o] DIALHOST
[7] S1:'CMD: ' ,REVERSE CMDS[I+I+1;] [11 ‘o~ L~9991234' [JPUT 10
[8] ' (ENTER Y TO SEND)' VSIGNON[O]V
[91 ANns [o] SIGNON
[10] ~+('Y'2144NS)/0 [1] 'LOGON ME' OPUT 10
[11] eCcMDSLI;] VPASSWORDLO]V
[121 (3>I)/51 [o] PASSWORD

[1] ‘CrRYPTIC' OPUT 10

These functions do not use the serial port interactively. As best I can deter-
mine, you cannot write an APL function that is fast enough to use the port this
way. Ideally, I could send a message to the host and then "listen" to the serial
port and accumulate characters as they came back from the host, until a carriage
return or a long pause signified that my message was complete. The serial port
has no buffer, however, and characters are lost unless they are captured as they
arrive, While you may write an APL program that continually "gets" characters
from the serial port, checks to see if they are indeed characters, and adds them
te a string if they are, the program will be toc slow; it will lose characters.

Some other APL implementations provide a system function to do the job (APL¥*PLUS
/PC, for example); it allows a message to be sent to the host, under a variety
of translation schemes; it then accumulates characters (to a maximum). The func-
tion can be initialized so that control returns automatically to the APL pro-
gram on receipt of any specific characters (such as BELL). This capability is

SuperPET Gazette, Vol.I No.11 ~-163=- December 1983/January 1984

also needed to interact with other devices, such as Hewlett Packard plotters.
The HP T4T70A, for example, can be queried for information about the location of
the pen, etc., but the response is now very hard to trap from APL. Something
along these lines is needed on SuperPET, and it's up to some dedicated 6809 pro-
grammer to provide it! Help!

In the example above, I have allowed the user to control when the next message
is sent to the host. Listen to the modem and watch the status lights; it usually
is clear when the next transmission should begin. This assumes, however, that
everything is working smoothly. If the system or network is down, the messages
you receive will be quite different from the ones you expect. Since you cannot
tell what the message says, only that there is one, this can lead to problems.
Hence, after you think you have successfully dialed up the host, use the pass-
through mode to check on a successful log-on before you proceed with your task.

One such task might be to upload an APL function to the host. It is actually
easier to edit a function locally than on a mainframe, and it costs a lot less.
The example below provides a way to upload APL functions from the micro to the
host by first opening the function editor on the host and then sending succes-
sive lines of the function. This represents the crudest form of uploading. If I
could, I would listen after each line is sent antil the host sends a prompt for
the next line., Barring that capability, I simply delay two seconds between each
transmission. This is usually time enough for the host's editor to respond.

VSEND _FN[O1V

[ol SEND_FN ;FN;MAT;N;I | THIS REPRESENTS A VERY SLOW
[1] RUPLOADS APL FN TO HOST APL FN EDITOR | WAY TO UPLOAD APL FNS

[2] 'ENTER: ',REVERSE ‘FUNCTION NAME' | TO THE HOST. AFTER SENDING
[31 FNe | EACH FN, YOU NEED TO USE

L 4] (32[WC FN)/ERR | PASSTHRU AND CHECK ON THE
L 5] N«14pMAT«{X’R FN | FN IN THE HOSTS' WS. THIS
L 6] I+0 | IS OBVIOUSLY QUITE TEDIOQUS
L 71 SEND 'V',FN | AND SHOULD ONLY BE USED

[8] S1:0 0pDL 1 | OCCASIONALLY.

L 9] SEND MAT[I«I+13;] = =eeecccccceccccccccccce——e——-
[10] ~+W>I)/51

(111 OpbrL 1

[12] SEND 'V! VSENDLOIV

[131 'SENT! [o] SEND MSG

[14] =0 [1] (xR MSG) OPUT 10

C

15] ERR:'FUNCTION: ',FN,' NOT FOUND'

There is no guarantee that all characters sent out the serial port will arrive
safely at the host. Is there a better way? The answer is yes. Waterloo has pro-
vided powerful communication facilities (HOSTCM) in each of the languages. This
includes error checking and automatic retransmission. To use these facilities,
however, the proper software must be running on the host computer. Fortunately
for APL users, John Wilson has mimicked much of this software in APL. Thus, if
you can communicate with a mainframe running APL, you can utilize some of SPET's
built-in HOSTCM facilities. This will be the subject of a later article. In the
meantime, if you do not have a HOSTCM Specifications Document, order one from
Waterloo. The one I have is written by T. Wilkinson and is dated February 1982.

The last example, listed below, provides a way to read files you have downloaded
to disk using a terminal program. Since nonprintable characters may have been

SuperPET Gazette, Vol.I No.11 -164- " December 1983/January 1984

transmitted and logged to disk, each record is "cleansed" after being converted
to internal APL format. This step runs slowly in APL, since booleans are actual-

VREAD LOGFILE[OIV VREVERSE[DIV
[o] READ_LOGFILE ;0IOERRSTOP;FN;NL;N [o] CR + REVERSE C
[1] ~RREADS FILE "LOGGED" BY WTE [1] cCrAv[128+04VC]
[2] [OIOERRSTOP<0 VCLEAR[OIV
[3] [«'ENTER: ',REVERSE 'FILE NAME' [o] R + CLEAR
L 4] v [1] RTCLOIO+4]
L s1 ('(7)',FN) OTIE 1 VCENTER[OIV
[61 ~+(02p[0STATUS)/ERR [o] R « CENTER MSG
[7] S1:NL«O [1] Re794((L(79-pMSG)#2)p"' '),
L 8] CLEAR
[9] REVERSE CENTER 'FILE: ',FN
[10] R1:0«CLEANSE QIR OGET 1,100
[11] +(20>NL«NL+1)/R1
[12] w04V PAUSE Orc(31,'USE PF 3 OR . TO MOVE TEXT, ELSE QUIT',0rCL7 4 4 8]
[13] (132 140=2pN)/R1,51
[14] -EXIT VPAUSELOIV
[15] ERR:'FILE NOT FOUND: ',FN [o] X +« PAUSE MSG
[16] EXIT:0UNTIE 1 [1] '(F:1)KEYBOARD' (ITIE 2
[2] [«MSG
VCLEANSELO]V [3] R:X+GET 2,1
[o] R +« CLEANSE CHARS [4] (D4avlOrol=x)/r
[1] Re(CHARSeAVLOIO+13+1113])/CHARS [5] [WNTIE 2

ly implemented as floating point variables; you may choose to bypass the process

if you are confident that the file is in good shape. Cleansing removes all line-

feeds and backspaces; overstruck characters from the mainframe that are not sup-

ported by SPET's character generator show up as two characters.

nnAnNANNNANANNANNNNNNANNNNNNNNNANNNANNNNNNNNANNNNAANNNNNNNANNNANNNANNNNNANNNNNANNNNN
6425 31ST ST., N.W., WASHINGTON, D.C. 20015 U.S.A.

UUUUUUUUUUUUUUUUUUUUUUUUUULUUUUUUUUUUUULUULULLULUUULUULUUUUUUUUUUUUUUUUULUUUUUUY
ATTENTION 8050 OWNERS! There's a serious bug in 8050 drives, which we've en-

Fixes for the DOSbug countered only on Tandon-made 8050s. These drives are

identified by a top-closing door hinged at the top. If
the problem exists for Micropolis-made 8050s or 8250s, it has not been reported.
John Frost of Seattle defines the problem and one solution. We've found several
more ways to cure the problem (which is infrequent. We've had it only five times
in two years). John writes:

"A bug in the DOS sometimes prevents reading or writing to disk. The drive motor
starts and the drive attempts to read a file, but then fails to do so. It final-
ly times out with the error message: "DRIVE NOT READY." The problem apparently
occurs when power is removed from a drive after a disk access to a track larger
than 55. The DOS can't recover control of the R/W head on the next power-up.

"You can recover from this condition if you open and quickly close a drive door
as the drive attempts to read a directory. The drive responds to this error by
'homing' the R/W head. You get lots of error lights, the drive makes some awful
sounds, and generates an error message. If you clear the error message, the dri-
ve is ready for operation. For info on this and other bugs/idiosyncracies of
our machine, I recommend the book CBM Professional Computer Guide, by Osborne
and Jim and Ellen Strasma (Osborne/McGraw-Hill)."

Super PET Gazette, Vol.I No.11 -165- December 1983/January 1984

Later, John reported that the door-flip did NOT work when he again had the bug.
Steve Zeller reports that if you always call for a directory on both 8050 drives
before you shut down, you'll not face the problem on subsequent start-ups.

Ye ed has encountered the problem several times on a Tandon-made 8050, always at
menu, at start-up. John's door-flip approach didn't cure it, nor did the method
recommended by AB Computers from BASIC 4.0 (left). So we loaded the mED from our

4040 drive, and found that both INITIALIZE and VALIDATE, given

open 1,8,15 with a prefix of: g ieee8-15., will kick the 8050 to proper op-
print#1,"1I0" eration. Later, we found that MOUNT also worked. But: how do you
print#1,"I1" load the mED if you have no extra drive? The answer, as with the
close 1 invention of the wheel, was so obvious we needed three weeks to

think of it: drop into the monitor and give the MOUNT code!

>m 1000 cc 10 07 bd b0 e7 3f 64 69 73 6b 2f 30 00 <RETURN>
(Code for drive 0. After you enter line above, 'go' on the next line.)
>g 1000 <RETURN>

Change the last two bytes to read: 31 00 to MOUNT drive 1, and 'g 1000' again.
We know this works, because we've twice used the code in the monitor to recover.

D20, 0. 0.0.0.0.0.0.0.0.0.0.0.0.90.90.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

UDUMP - A UNIVERSAL DUMP TO For six months, we've had a number of great
IEEE4, PRINTER, SERIAL, or DISK dumps in hand from Gary Ratliff and Terry

Peterson——but all of them dumped to just one
file, either to disk, printer, serial or ieeel. When in the monitor with a dump
to printer, we needed a dump to disk, etc.--the right one never was in memory.
Terry P. has been working hard on a universal dump which'll load up in Bank 15
--but the operating system neglects to handle interrupt-driven routines in the
banks when you load a new language. While Terry was working on that one, we con-
verted a routine Terry and Gary had written/revised into a universal dump. With
UDUMP loaded, you always can dump to disk, serial, ieeel, or printer.

It is reliable; better, it dumps from screen line 1 through the line the cursor
is on and then stops. Put the cursor on line 25, and it dumps the whole screen.

xref curpos , memend , conbint , printf , openf , kyputb
xref closef , fputchar_, fputnl , initstd , intvetr_, kyindx_, kyptri_
xref kyptr2 , file , usirq , printer_, serial , write , append_

main equ * Load this program from main menu; any time there-
Jjsr initstd_ after you can dump your screen to any printer or
1dd #fmain to disk by pressing PF7 (SHIFT KEYPAD 7) and by
std memend_ touching the appropriate key: 'i' for ieeel4, 'd'
clr $32 for disk, 'p' for Commodore printer, or 's' for
clr busy serial. No RETURN is required after you touch the
1dd #instr key; the character is 'got' from the keyboard.
Jjsr printf
ldx #8 You will not scroll any lines off the top of the
1dd intvetr_,x screen if you dump from line 25.
std resvd
pshs x Put a disk file named 'file%n' on drive 0, since
ldd #start all dumps to disk are appended to that file.
jsr conbint_
puls d Delton P. Richardson kindly revised the code so
rts that reverse-field characters on screen are sent

SuperpPET Gazette, Vol.I No.11 -166- " December 1983/January 1984

start equ
jsr
1db
cmpb
lbne
tst
if eq
dec
1dd
Jjsr
1dd
addd
std
1dd
std
bsr
1db
gues
cm

[resvd]
Kyindx
#$95
done
busy

busy
#margin
printf
curpos_
#80
where
Kyptr2_
kyptril_
getit
#'d

s

pb type

quif ne

ldd

pshs d
1dd #file

admi

t

ldd #write_
pshs d
ldb #'i

cmpb

type

quif ne
ldd #ieee

admi

t

1db #'s

cmpb

type

quif ne

1ldd

admi

ldd

t

endguess

Jjsr
std

openf _
outpt

puls d

if ne
ldx #1
loop

1db kyindx_

cmpb #4
quif eq
pshs x

bsr print
puls x
leax 80,x
cmpx where

until hs
1dd outpt

SuperpPET Gazette, Vol.I No.11

#append _

#serial _

#printer_

to dot-matrix printers as normal characters, and
also suggested several changes in an early ver-
sion which make UDUMP much more versatile.

We did not have time to revise the code to reject
any characters but the four listed above, so the
dump defaults to 'printer' if you press the wrong
key.

This is a reliable dump, very useful in the moni-
tor, since you may send readouts both to disk and
to printer.

Much of the original code was written by Jeff
Larson, Gary Ratliff, and Terry Peterson. Without
that base, we'd have been lost. A few interesting
things did pop up:

System routine kyputb (See Ratliff's notes, p.
83, No. 7) 'gets' characters from the keyboard
without a RETURN, and sticks them in the keyboard
buffer ($130 to $157) without putting them to the
screen (it returns the character in B register).

That routine can cause a serious problem in the
monitor. On the next-to-final version, we dump-
ed monitor data well, but every so often the key-
board buffer dumped its contents onto the screen
with all the CR's it held. We'd get a series of
INVALID COMMAND notes from the monitor as it re-
jected the buffer input, or would crash when the
command was valid (>g 7e70 will crash you if you
have already 'gone'!). We tried a number of solu-
tions, but we found that the only reliable way to
whip this problem was to clear the keyboard buff-
er after each run. See comments on the code just
above the label 'done'.

For those who need a linefeed (LF) with every CR,
we've added some optional code at the end of the
subroutine 'print'. If you use it, it sends an LF
to all printer options, but sends single-spaced
material to disk.

Add the following 'usrlib.exp' file to your 1lan-
guage disk before linking, since we use a number
of routines which are not in watlib.exp.

File usrlib.exp:

export memend = $22

export intvetr_ = $0100
export curpos = $0122
export kyindx = $012b

=167 December 1983/January 1984

done
margin
where

getit

print

norm

SuperpPET Gazette, Vol.I No.11

Jjsr closef
endif

clr Dbusy
endif
ldy #$130
loop
clr WY+
cmpy #$158
until eq
rts

fcb 11,13,0
rmb 2

loop
Jjsr kyputb_
cmpb #0
until ne
stb type
cmpb #$7b
if pl
jmp getit
endif
rts

lda #79
leax $7fff,x
loop
1db a,x
cmpb #'
quif ne
deca
until mi
cmpb #'
if ne
loop
1db ,x+
cmpb #$a0
blo norm
subb #$80
pshs d,x
1ldd outpt

jsr fputchar_

puls d,x
deca
until mi

endif

; 1db #'d
;empb type
sif ne
;1dd outpt
yJsr fputnl

$012¢c
$012e
$02ff

export kyptril_
export kyptr2
export usirq_

(File continued below)

Start of keyboard buffer.

Characters w/out CR 'leak' to screen...and enter
false monitor commands, so clear buffer to the
end, at $157, on each pass.

W we 9 we we we

export printer_ = $b129 (continued file)
export serial = $b144y

export write_ = $b191

export append_ = $b19e

export kyputb_ = $dd82

export file = $£U451 (end, usrlib.exp)

The .cmd file for UDUMP without an extra linefeed:

" ud um p"

org $7e70

include "disk/1.usrlib.exp"
include "disk/1.watlib.exp"
"udump .bO9"

Exactly two bytes are free below $8000 after UDUMP is
loaded into $7e70. If you add to the code, best move
it down. We alsc note that the chunk of code incorpo-
rating the GUESS...ENDGUESS is near block maximum, so
any attempts to add much to it will fail wunless you
go to a subroutine.

If you add the extra linefeed for printers which need
it (below), set origin to $7e60!

Don't try to load this one in the monitor--it RTS's
to menu. If you want to, take out the CLR $32 in MAIN
and substitute SWI for RTS in MAIN. You should also
remove INSTR (the prompt) and the two lines in MAIN
which load and print the prompt. Yes, it loads in the
monitor that way and runs--but the stack is utterly
mad, the registers are equally insane, and we firmly
expect SuperPET to implode. Proceed at your own risk.

s OPTIONAL printer code for linefeed with each CR:
; Remove semicolons and use the next 6 lines.

+ Is this a dump to disk?

: If you use this, set
No, not a disk dump. origin to $7e60!
So, add a linefeed for printer.

-168- December 1983/January 1984

sendif ’
1dd outpt s+ Always use this line.
Jmp fputnl ; Ditto

outpt rmb 2
resvd rmb 2
busy rmb 2

type rmb 1
ieee fce "ieeel"
fecb 0 No, we aren't careless--the double %$n%n in the

e we

prompt below double spaces the screen lines.
instr feb 12
fce "UDUMP loaded. To use: press PF7, then one of keys below.%n%n"
fce "To disk: 'd'] to ieeel: 'i'| to printer: 'p'} to serial: 's'én%n"
feb 0
end
OO0 O OO0 OO0 OO0
PROBLEMS IN MPASCAL AND MFORTRAN Thomas K. Roney teaches at Kent School, Kent
Crashes in Recursion and CT, 06757, and asked why SuperPET crashed in
Errors in Large Numeric Values lengthy recursions and why a factor of ten
was missing in large floating-point . decimal
displays. We asked Bob Davis, Associate Editor in mPASCAL, to look into it, and
he did. His reply to Mr. Roney is printed below:

"By the way, I've discovered that the floating decimal point display bug exists
in mFORTRAN also! Recursing functions can be nested 10 deep and recursing pro-
cedures can be nested 16 deep without a problem in microPASCAL. And, yes, Super-
PET does go into rigor mortis (catatonia?) beyond these limits without any error
message. You may avoid the problem only with a software solution--write the re-
cursing program to tally the calls; if the maximum is' reached, provide an error
message and prevent further recursion.

"I find that numbers up to but not including 1000000000.0 (0.1E+10) are display-
ed correctly in floating decimal format. If there are no more than nine digits
to the left of the decimal point, the display will be correct. However, any lar-
ger number will be displayed a factor of ten less than it should be in floating
decimal point format, as you discovered. Again, you must provide a software sol-
ution. In mPASCAL, this might be: if value < 0.1E+10 then writeln (value :15:3)
else writeln (value * 10.0:15:3).

"MicroPASCAL will accept floating decimal peint input correctly up to 1 followed
by 37 zeros, a decimal point, and a zero! Beyond this, you receive an error mes-
sage, "Warning;line nn: Real number overflow" and the program continues although
the value of the variable is garbage. Also, the maximum field width for a float-
ing decimal point display is 20. Neither of these limitations should normally be
a problem, however.

"Out of curiosity, I tried mFORTRAN using Example 27 from the tutorial disk to
see if the decimal shift bug is unique to mPASCAL or is general to the Waterloo
system. I find that the same decimal point shift occurs using the corresponding
format; i.e., mFORTRAN's 'print £15.3,r', which is equivalent to your example in
mPASCAL of 'writeln (r:15:3)'. You should warn your mFORTRAN students of this
and have them program a software solution.

SuperpPET Gazette, Vol.I No.11 -169- December 1983/January 1984

"The decimal point shift bug does not exist in microBASIC, since numbers 0.1E+10
or larger (and 0.1E-4 ¢ smaller) are automatically converted to scientific not-
ation. Example 12 on the tutorial disk illustrates this. Someone else will have
to answer if the bug exists in APL or COBOL, but I don't believe it can."

Later, Bob told us that the 'factor of 10' problem affects only the screen dis-
play. Since internal calculations are right, correct the display only.
OO0 OO OO OO0 OOOOOOOOOOOOOOOOOO0
PLOTTER PROBLEMS H.O. Pritchard, Professor of Chemistry at York University
In SuperPET at Downsview, Ontario M3J 1P3, reports problems in mFORTRAN
while using an HPT4T70A plotter with SuperPET. The plotter
is addressed as ieee5. When, after mFORTRAN has been running for a long time, he
requests digitized input from the plotter with the
open (unit=10,file="ieee5") sequence shown at left, he receives an EOF error.
read (10,*) x,y,ipen The problem is cured either by reset of SuperPET,
[Returns EOF error] or by revising the program to read as shown in the
second version at left. Dr., Pritchard states that
open (unit=10,file="disk5" the problem afflicts a number of SuperPET models,
read (10,%) x,y,ipen from the earliest to the latest, and suspects ROMs
[Works] carrying IEEE system routines are in error, since
the problem does not occur when he uses BASIC 4.0 with the 6502. He reports that
the same problem crops up in microBASIC and in Assembly language. Waterloo has
been queried and we'll report on their response, Note: this is an input bug; it
may afflict other input devices on the IEEE bus. Dr. Pritchard also also reports
the same problem noted by Bob Davis elsewhere in this issue: the loss of a fact-
or of ten in screen displays of large numeric values in mFORTRAN.

OO0 OO OO OO0 OO OO OO OO OO OO OOOOOOOOOO00
MORE ON RELATIVE FILES In this article, I'll cover some less basic aspects of

by Loch Rose relative files, beginning with ways to handle files if
102 Fresh Pond Parkway some records contain more data items than others. Pro-
Cambridge, MA 02138 gram 1, below, creates such a file:
Program 1

400 randomize : string$ = "abcdefghijklmnopqgrstuvwxyz" : c$ = ","

410 terminator$ = chr$(255) ! terminator$ could be any character(s)

420 open #2, "(f:60)examples,rel”, output

430 for recnum = 0 to 20 ! write 21 records

440 num_items = int(rnd*5) ! each record randomly contains 0-4 items

450 print #2, rec=recnum, ""; ! positions you at start of rec. #recnum

460 for j = 1 to num_items ! if num items=0 this loop is skipped

470 print #2, str$(string$,rnd*21+1,4); c$; ! print a Y4-char. string

480 next j

490 print #2, terminator$! last char, (since no ';', end of record)

500 next recnum

510 close #2 : stop ! SAVE this program

As usual, data items are separated by commas; note that now the last data item
is always a chr$(255). The remark on line 490 refers to the fact that a PRINT#
statement that does not end with a semicolon causes the end of the current rec-
ord and the start of a new one, though in this case line 450 would cause you to
move to the next record on the next iteration anyway. Program 2, below, shows

how you can INPUT the file created above:

Program 2
200 open #2, "(f:60)examples,rel”, input
210 for recnum = 3 to 18 ! for fun, only look at records 3-18

SuperpPET Gazette, Vol.I No.11 -170- December 1983/January 1984

220 num_of data = 0 ! we'll count # data items per record
230 input #2, rec=recnum, data item$! only this 'input#' has a 'rec='
240 while data item$ <> chr$(255) ! input until terminator character

250 num_of data = num of data + 1

260 print tab(10*num_of data-9); data_item$;

270 input #2, data item$! note that this item still comes from
280 endloop ! same record (i.e. record #recnum)
290 print tab(51); "# items in record"; recnum;"="; num of data

300 next recnum

310 close #2:stop ! I suggest SAVEing this program

The program keeps inputting data items from a record until it encounters a chr$
(255).

Another way is to store the number of data items in a record at the start of the
record itself. We'll create such a file by modifying two lines in program 1; the
new lines should read as shown below. (Note: line 450 also stores the record #

at the start of each
450 print #2, rec=zrecnum, recnum; c$; num items; c$; record.) Before running
490 print #2 the new program (called

#3), scratch the old
file by typing 'scratch "(f:60)examples,rel™', I emphasize that you must ALWAYS
refer to a relative file by its full name, '(f:60)' and all, or horrible things
can happen.,

Program 4 reads the new data file (in reverse order, for variety). You'll notice
that it is actually a bit faster than program 2, despite having to read one more
piece of data per record, so I'd give this method the edge:

Program 4
600 open #2, "(f:60)examples,rel", input
610 for recnum = 18 to 3 step -1 ! read in reverse order
620 input #2, rec=recnum, filerecnum, num of data ! read first 2 data
630 print filerecnum; tab(11); num_of data;
640 for i = 1 to num of data ! read # items we know are there
650 input #2, data_item$
660 print tab(10*i+11); data_item$;
670 next i
680 print

690 next recnum
700 close #2:stop

I don't bother with error trapping in any ¢f these programs, as SuperPET catches
most errors without being asked. (One error it won't catch-—-try to input more
items from a record than it contains and SuperPET gets the extra items from the
next record.) There is one special use of IO _STATUS: if you use GET# to read a
relative file, IO _STATUS changes from its usual value of 0 to 1 at the end of
each record., This is your only way to keep records distinct, as GET# cannot use
the 'rec='" clause. I prefer to take the whole record at a gulp with LINPUT#, and
avoid GET# entirely.

In the (frankly) unlikely event that you wish to break records up into a known
number of fields, each field containing an unknown number of data items, you can
use the LINPUT# statement. LINPUT# reads everything up to the end of a record
or up to a chr$(13) character, whichever comes first. In the following program,
we break each record into three fields:

SuperpPET Gazette, Vol.I No.11 - =171= December 1983/January 1984

Program 5

10 ¢$ = "," : CR$ = chr$(13) ! CR$ will separate the three fields
20 open #2, "(f:100)check,rel", inout

30 for i = 1 to 5 ! create five records

40 print#2,i;c$;i*i;CR$;value$(i);c$;"record #";i;CR$;"this is it";CR$
50 next i ! last CR$ is optional

60 linput #2, rec=3, a$! input first field, record #3

70 linput #2, b$! input second field, same record
80 linput #2, c$! input third field

90 print a$: print b$: print c$! print the three fields

100 stop

[Ed. You'll find what Loch writes most useful, but only if you enter the pro-
grams, run 'em, and revise 'em. As Gary Ratliff said, early on, "You learn to
program by programming, not by reading about it." We'll print a method by Loch,
next issue, which very cleverly lets you specify any date after 1900 and 1learn
where the record for that date is kept in a relative file.]
OO OO O OO OO O OO OO OO0 OO0 O OO0 OO0
HOW MANY RELATIVE FILES We got a note from Stanley Brockman, 11715 W. 33rd
DID YOU SAY, STAN? Place, Wheat Ridge, Colorado, 80033, saying he was
happy he innocently didn't know he was supposed to
be limited to 720 records in relative files 6n his 4040 drive, else his primit-
ive data base manager program wouldn't have more than 1000 records in it. Stan
went through his disk manual, and calculated he should be able to get 2088 rec-
ords (as opposed to the 720 on p. 80 of the Gazette). He tested and confirmed
that number, Later, he wrote that on the CBM side
int(658%254/recordlength)-1 you can get one more relative record: 2089, though
= 2088 records he isn't sure why. We double-checked Stan's figures
and stuffed REL records on the drives listed below,
until they would not take more. The capacities on 80-byte records in SPET most
certainly are what Stan says they are. We read good files through the numbers
listed below:

Micropolis 8050 Tandon 8050 Tandon 4040
Records 2285 2285 2088
Blocks 726 726 664
* % *

ON EDITING REL FILES You can pull 1068 80-byte records into the microEDITOR
from a REL file before memory fills; if you have this
number of records or less, it's a nice way to get a list which correlates record
number with the data in that record. You can also get records 1larger than 80
bytes into mED for the same reason, but you must specify the record size if you
try, as in the 'get' at left. You can recover a REL file in
g (f:200)file,rel 'fixed' filetype as a TEXT file, but the format is mucked up.
(t: works) If you refile an edited REL file from the mED as a RELATIVE
file, despite the record size you may specify (as in f:200), you'll never get it
back in 200-byte chunks--but rather in lines of 80 bytes. In language, if you
ask for input of rec = 20, you'll get back the contents of the twentieth line in
the file (assuming option base 1).

There is one exception: you can edit and refile records of 80 bytes, because in
such files one line = 80 bytes. Otherwise, don't refile REL files from the mED;

you ruin the relative access to the file. (If you do refile it,
p file,rel specify it as a relative file, as at left.)

SuperpPET Gazette, Vol.I No.11 -172=- December 1983/January 1984

nNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNANNNANNNNNNNNNNNNNNANNNNNNNNNNNANNNANNNNNNNNNNNNANN

I P O T B T T U G W Y CREY SHNY URR VNS VST N S PN GO KN MUY S S N S GO TS MU NC I G RN SR R G U S RO SR U SO U T SN (T G N Y S W Y S LY VA EO |

SUPERPET USERS

3202225882 . BSLLCOLILLEEL. FRLSRTLOIBLELTL. FBITTLLOLLL. BUBLBALSRRLOVRL. 88L&

Have you ever wondered what the /%*3$%& is the difference between
'c*/ $*//' and '*c/ %*//' ? Tired of flipping that switch just to do a
'collect'? The SuperPET Tutorial Disk reveals the mysteries of the data
editing commands and 'meta-character' strings, using clear and useful
examples. It also contains:

A GENERAL NARRATIVE DESCRIPTION OF THE MICROEDITOR

°© SYNTAX AND EXAMPLES FOR ALL MICROEDITOR SEARCH STRINGS.
EXAMPLES AND EXPLANATIONS OF ALL MICROEDITOR COMMANDS.
EXAMPLES AND EXPLANATIONS OF ALL MICROMONITOR COMMANDS.
EXPLANATIONS OF ALL SETUP MENU OPTIONS.
COMPLETE INFORMATION ON THE PROGRAMMED FUNCTION KEYS.

© INFORMATION ON ALL FILE TYPES AND FORMATS

°© EXAMPLES OF ALL VARIATIONS OF THE DISK ACCESS COMMANDS.

© INSTRUCTIONS ON ISSUING ALL DOS COMMANDS FROM THE EDITOR.
EXPLANATIONS OF ALL DOS ERROR MESSAGES.
INSTRUCTIONS ON AUTOMATING DISK MAINTENANCE TASKS.

© INFORMATION ON RS-232C AND THE TERMINAL FACILITIES.
°© A TABLE OF IMPORTANT SYSTEM ADDRESSES AND SOFTWARE SWITCHES.

° DECIMAL AND HEX VECTOR ADDRESSES OF WATLIB AND FPPLIB ROUTINES.
6809 ASSEMBLER INSTRUCTION OPCODES, MODES, AND LENGTHS.
HEXADECIMAL-DECIMAL CONVERSION TASLE.

© HEXADECIMAL AND DECIMAL ASCII CHARACTER TRANSLATION TABLES.

THIS PRODUCT COSTS ONLY $39.95, POSTAGE AND HANDLING INCLUDED. THE ITEMS
MARKED WITH 'eo' ARE ALSO AVAILABLE ON A REFERENCE CARD WHICH IS INCLUDED
WITH EACH TUTORIAL DISK ORDERED. THE REFERENCE CARD ALONE COSTS ONLY $10.

IF YOU ORDER ANY DISK-BASED PRODUCT, THE DISK YOU GET WILL ALSO CONTAIN
A SELECTION OF THE BEST PUBLIC-DOMAIN SUPERPET SOFTWARE FROM VARIOUS
SOURCES. ALSO AVAILABLE IS THE APL-MICROEDITOR INTERFACE; IT ALLOWS USE
OF THE MICROEDITOR FOR EDITING APL FUNCTIONS AND VARIABLES. VOLUME DIS-
COUNTS ARE AVAILABLE (30 PERCENT OFF FOR 2-10; 40 PERCENT OFF FOR 11-100.

SEND A CHECK NOW (AND SPECIFY 4040 OR 8050 FORMAT); OR WRITE FOR INFORMA-
TION TO*

DYADIC RESOURCES CORPORATION
PO BOX 1524, STATION A
VANCOUVER, B.C. CANADA V6C 2P7

(‘c*/ %//' hangs up; '*c/ %*//' does nothing; '*c*/ %*//' removes spaces
- from left)

TTTTTTTTTTTTT‘I’TTT'I’T‘I’TTTYTYYTTTTTTYTTTTTTTYTTTTT*YTTTTTTT

VUuUuUUUUUUUUUUUUUUUUUUUUUUUUULUUY

to set up printer files for any printers not included. We merged 'CLIP with the
disk printer file for DIABLO and were printing in five minutes. Once the printer
file is merged, you needn't ever set up for that printer again, for you file the
merged version to disk. We have two such files: clip.diablo, and clip.ascii, the
last being most handy for output of printer files to disk for telecom and mED in
6809. If you have the wrong version loaded, you can stuff another printer file
into 'CLIP just before you print--quickly.

Ranges in 'CLIP can be set to lines, words or characters, not just to lines,
as in WordPro. A range is reverse field set by you to mark text you want to er-
ase, delete, move, or save...A lot of complex commands/options come to screen
with a YES/NO prompt; the most comfion re8ponse is pre-printed so you can hit a
RETURN and accept it...You can change device numbers on disks/printers within
'CLIP...Batteries provides character generators for foreign languages which you
can employ from 'CLIP.

You can search/replace five phrases at once (want to??); but after you find
a phrase, you have the option to replace/not replace (bingo!)...'CLIP provides
a multiple line insert--tell it how many blank lines you want; it creates them,
complete with hard carriage returns... AND the best trick yet: you can jump in-
stantly to end-of-text with SHIFT/RUN, and need not spend all day Saturday cur-
soring down...'CLIP deletes a range of text quickly, far faster than WordPro...
You can COPY any phrase on the screen to the screen up to 255 times (superb for
creating forms)...and 'CLIP makes perfect ASCII files with the 'True Ascii' file
on the 'CLIP disk--without the prefixed quotation marks WordPro creates...If you
want semi-proportional spacing, 'CLIP supports it, but you must create your own
printer file, using the 'CLIP instruction magual.

And more: In formatted output, you get a word-count of each page...And there
is a built-in sort for lists... Plus a simple way to create a Table of Contents,
which is automatically saved to disk. You mark all entries you want for the ta-
ble; 'CLIP saves that entry and its page number...And you can restart output at
the top of any page if you catch an error...You can move, erase, or reproduce a
column in text...And you can add/subtract both rows and columns of digits, to a
specified number of decimal places. Plus some other goodies. As might be expect-
ed, you must learn a gob of new commands, but you cannot get power without com-
plexity. Those who need only a text-processor for simple jobs will find 'CLIP as
easy to use as WordPro in that context; switchover to 'CLIP commands is easy.

An integral spelling checker may be available about March '84, with a dictionary
of 20,000 words, and space for another 5,000 on a 4040 disk. Reported time to
check a full screen page (over 700 lines): about 150 seconds.

Want to update to newer versions of 'CLIP? Keith Hope, the Technical Director
of Batteries, writes: "Current owners can update their program to the newer ver-
sion several ways. They can request a copy of the new diskette from their 1local
Commodore dealer, or they can send $15.00 to Batteries Included and we will send
them an updated diskette." That is a responsive and sensible arrangement.

We've covered the good changes--those that particularly impressed us. There are
some things we don't like:

1. The directory readout in 'CLIP is a disaster; it mars the whole program.
If there is a way to send one to printer, we couldn't find it. 'CLIP returns to

SuperPET Gazette, Vol.I No.11 =174~ December 1983/January 1984

the old Commodore single-column string-of-spaghetti, a hopeless arrangement for
professional word-processing. While you can pause the directory and call for a
file, you can't restart and rescroll. You get to call for a directory--from the
top--all over again. WordPro's four-column directories are far superior, for you
can edit them, scroll them, send them to printer, xerox them, and file them on
8.5x11 paper. If you could print 'CLIP directories, you'd have a yard of sphagh-
etti on 8050s and 8250s. (Batteries says Version 9000B will let you load direct-
ories as text, which means you can sort, print, and edit--in four columns, we
hope!). Meanwhile, we print 'CLIP directories from WordPro.

2. In 9000A, WordPro's old, quick 3-keystroke 'delete-word, delete-sentence
commands are replaced by a slow, involved process in which you set range on the
phrase and then 'kill' it. It is so slow we gave up and deleted manually. 9000B
is supposed to incorporate a quick 3-keystroke method. It's needed!

3. A serious design deficiency: An HCR (hard carriage return, which shows on
screen as a left-pointing arrow) at the start of a line is not deleted when you
enter text to its right.,(All WP programs we've ever seen do it automatically).
Result: when you file to disk and retrieve that line, it's indented half-a-page.
Since 'CLIP prints HCR's automatically on new, blank lines, you find it easy to
send text to file with an HCR on a line,-with.disastrous results. This bug must
be fixed; we're not about to check every indented line for a prefixed HCR.

4. We loathe blinking cursors, and 'CLIP's cursor is a fast blinker, which
drove us out of the house screaming in half an hour. Some folks like blinkers;
some don't; there ought to be a way to turn that infuriating wink off.

In sum, we can recommend 'CLIP, with the reservations above, since it sells for
about four-tenths of WordPro's price and is a marvellously versatile WP program.
Barry Bogart strongly recommends it; Jim Strasma's last words in MIDNIGHT are:
"This is it! This is the one you've waited for...." Barry Bogart adds, "I think
any company interested in supplying the SuperPET market deserves our patronage."
L9 0 0. 0.0 0. 0.0 0. 0. 0.0 0.0 0.0 0.0 00 0. 0000 .0.0.0.0.00.06.0.0.04
A SHORT WAY TO SET AND GET We've had a couple of questions from teachers on
TIME AND DATE IN MICROPASCAL how to get time and date information in program
in mPASCAL, which has no instrinsic functions to
set or get time or date. It's easily done, as demonstrated below by a couple of
short programs written by Marvin Cox of 4900 W. 96th St., Oak Lawn, Ill. 60453,
which peek/poke the direct memory locations where time/date are kept in SPET. If
you want more information on settime/gettime, see p. 46 ff, Vol. 1. Those who
need them can easily write independent programs to set or get time or date from
the examples and data below.

program datesetsee_pd(input,output); {enters date and then reads it}
var
iisinteger;
date:char; .
begin
writeln(chr(12));
writeln('Enter 3 characters for month, 2 digits for day, 4 digits for year.');
writeln('Use a space between month entry, day entry, and year entry.');
for ii:=0 to 10 do
begin
read(date); {Date is kept in $0164 thru $016e, in 11 consecutive}

SuperPET Gazette, Vol.I No.11 -175- December 1983/January 1984

poke(356+ii,ord(date)) {bytes (or 356 to 366 decimal, inclusive). Eleven}

end; {characters are maximum for the date set.}
writeln;
for ii:=0 to 10 do

write(chr(peek(356+ii)));

writeln
end.

* B *
program timesetsee_pd(input,output); {Enters time and then reads it.}
var
timeset,ii:integer;

begin
writeln(chr(12)); .
writeln('Enter hh,mm,ss,jj without commas, and with a RETURN after each.');
for ii:=0 to 3 do

begin {Time is kept in four consecutive bytes, as follows:}
read (timeset); {$160, hours; $161, mins; $162, sec; $163, jiffies.}
poke(352+ii,timeset) {This converts to 352 through 355, decimal.}

end;

writeln('New time is', peek(352),':',peek(353),':',peek(354),":',peek(355))
end.
L0 0 0. 0.0, 0. 0. 0.0, 0.0 0.0 0.0 0.0 0. 0.0.0.0.0.0.0.0.0.0.0.0.0.0.00.0.0.0.0.0.0.0.0.0.0.00.00.0.0.0.0.0.0.0.0 o
BITS BYTES & BUGS = by Gary L. Ratliff,Sr.
215 Pemberton Drive, Pearl, Mississippi 39208

Let's answer the questions of the last issue. The first: What alterations to
code are needed if 'pshs d,x' is used in place of: 'pshs x - tfr d,x - pshs d4°'.
This method saves considerable time, as each push onto the stack takes five cy-
cles, plus one additional cycle for each byte pushed. Pshs x and pshs d, there-
fore, account for 14 cycles; five for each push, plus two additional cycles for
each of the two-byte registers. In contrast, 'pshs d,x' needs only nine cycles.

As to what revisions are needed if 'pshs d,x' is used: As you'll see in the ans-
wer to the question of the order of push and pull to the stack, the order of the
registers (relative to the stack pointer) remains the same with the new method,
so that the 'subd ,s' code needs no change. If the order had been reversed, and
the D register had been placed on the stack prior to the X register, then the
'subd ,s' instruction would need revision to 'subd 2,s' to account for this. The
original and revised codes are compared at left. The X register and the D regis-

ster are saved in one step, which kills the need for

from to the 'pshs d' instruction. The answer in D must now
pshs x pshs x,d be placed on the stack, as it will be recovered by
pshs d (eliminate) the subsequent pull. This saves some time and also
ldx 2,s std ,s eliminates one line of code. But isn't it more con-
leas 4,s puls x,d fusing and a little more error prone than the method

used originally?

The second question (what is the order of push and pull to the stack?) is best
answered by a demonstration. We can't use the system stack for this, since it is
used by all interrupts and JSR and RETURN instructions. Instead, we substitute
the user stack and show the order in which registers are pushed and pulled. To
see this, enter the monitor (from the mED with: mon <RETURN>, or from DEVELOP=-
MENT or main menu with: m <RETURN>). We 'm' for 'modify memory,' starting the

code at $1000. The line of code tells the
>m 1000 ce 20 00 36 ff 3f computer to set the U (for User) Stack to

SuperPET Gazette, Vol.I No.11 -176- December 1983/January 1984

>g 1000 start at $2000, to push all registers on
or the User Stack, and then to break back to

PC D X Y U S CC DP the monitor. Before you try this, be sure
:1005 0102 0304 0506 1ff4 0220 cO 00 to overtype the D, X, and Y registers to

>d 1££4-2000 show the values at left. We need the val-
1£f4 ¢0 Condition Code (CC) 12 ues to track what happens (don't reset PC
1ff5 01 A (D high byte) 11 or the User Stack Pointer, which will be
1££6 02 B (D low byte) 10 at 0000 before the 'run'.) Then give your

1£f7 00 Direct Page (DP)
1ff8 03 High byte, X

1ff9 O4 Low byte, X

1ffa 05 High byte, Y

1ffb 06 Low byte, Y

1ffe 02 High Byte, S pointer
1ffd 20 Low Byte, S pointer

>g 1000. After the run, dump registers as
we show at left. Note that the User Stack
Pointer (U) has decremented to $1ff4. The
stack 'stacks' downward. I have annotated
the memory contents from $2000, where we
started the stack, to $1ff4, at bottom.
The 'push order' of the stack is clearly
1ffe 10 High Byte, PC shown, left. Note: the stack pointer not
1fff 05 Low Byte, PC used (here, the Hardware Stack Pointer),
2000 xx (Order) is saved. If we had pushed all this onto

the Hardware stack, we would have saved
the value in the User Stack Pointer instead. Of necessity, the 'pull order' of
the stack is the opposite of the push order.

= DwEFruony ©ow

Thus we see that 'pshs x,d' places the contents of the X register onto the
stack before the contents of the D register. The stack pointer shows the last
location on the stack which was filled. Hence the pointer is decremented be-
fore a value is stored. (And, therefore, subd ,s in the length example subtracts
the value of the start address which was originally saved in the D register from
the count which was obtained in the adjusted value of the X register.)

The use and misuse of the stack is such an important topic that it will be
treated in an article as soon as I can get to it (no more than a yearl!).

Music generation on the SuperPET is a very complicated topic. The examples
presented will generate no sound unless you find and correct the error. In all
examples the nop instruction is incorrect. Assembly language operates sooo fast
that the ear can't detect the sound presented in one millionth of a second. But
the 6809 has a special instruction to handle such events which the 6502 lacks,
and you'll find it in the Waterloo Assembly-Language manual (as well as at the
end of this column if you get tired of learning while searching). When generat-
ing sound with 6502 code, you need elaborate delay routines to obtain the timing
which will appear to the ear to be music.

There are specific boards designed for use on the 8032 (SuperPET) which allow
the creation of pleasing musical compositions. The capabilities of the Commodore
64 with its SID chip are even more spectacular (my brother owns a 64, and both
the color and sound always amaze me. I even purchased a TI-99/4A recently to get
first-hand experience with color and sound capabilities). And though I thought
that a SuperPET could not have additional boards added, a letter from Col. Stal-
lings states that he has the MTU music board and software.

We are now going to produce a few sounds from SuperPET. I can't even read
music, so don't expect a treatise on composing sonatas. The basic information is
contained in the book, Programming the PET/CBM, by Raeto Collins West, published
by COMPUTE! Books. More information is found in CURSOR (no longer published) and
by Gregory Yob in one of his Creative Computing columns.

SuperPET Gazette, Vol.I No.11 -177= " December 1983/January 1984

Our first task will be to attempt to reproduce the familiar chimes which we
hear when the SuperPET is turned on in 6502 mode. To do this, we'll translatete
the code which runs the chimes from 6502 to the equivalent 6809 code.

jchimer.asm--for 6809 6502 Code
driver jsr chimes
swi
chimes jsr chime ebald 20 a7 eb jsr chime
chime 1dy #$10 eba7 all e7 ldy $e7 j;chime timer loc
sty $e7 eba9 f0 25 beq $e690;contains $10
lda #$10 . ebab a9 10 lda #$10
sta $e84b ; set VIA timer to ebad 8d 4b e8 sta $e8U4b
lda #$0f ; free running mode ebb0 a9 Of lda #$0f
sta $e8la ebb2 8d U4a e8 sta $e8la
ldx #7 ; num. of note 2 play eb6bb5 a2 0 1dx #$07
outer 1lda tabl,x ebb7 bd 4d e7 1lda $eTld,x
sta $e848 ; play selected note ebba 8d U8 e8 sta $e848
lda $e7 ebbd a5 e7 lda $e7
inner 1leay -1,y ; same as dey ebbf 88 dey
bne inner , ebc0 d0 fd bne $ebbf
ldy $e7 ; reset y value ; when y dec in 6809 it goes to $FFFF--
s a rather long delay, so we reset here
sec ebc2 38 sec
sbea #$01 ebe3 e9 01 sbe #$01
bne inner ebe5 d0 8 bne $ebbf
dex ; all notes played? ebeT ca dex
bne outer ; no get next note ebc8 d0 ed bne $ebb7

stx $e8l4a ; yes turn sound off ebca 8e Ua e8 stx $e8la ;x is double
ebed 8e Ub e8 stx $e8Ub jone does al
- rts eb6d0 60 rts
tabl feb $00,$0e,$1e,$3e,$7e,$1e,$0e,$00 eT4d 00 Oe 1e 3e Te 1e Oe 00

"chimer" At left is chimer.cmd, needed for linking. Load chimer.mod in
org $1000 the monitor (not from menu!), then: >g 1000. The program will
"chimer.bO9" produce the chimes we are so used to hearing every time the

6502 side is called.

[Ed. You'll need good ears. We couldn't hear chimes until we put an ear against
the case. The code is okay as is. Gary's second program, below, is easily heard.
For those who want music: John Toebes of Raleigh claims that you c¢an run both
leads on the tiny speaker in SuperPET to a larger, external speaker and get good
sound. We asked if more power was needed, and John said: 'No!']

The example above shows that translating 6502 code into 6809 is almost triv-
ial. About 95% of the code may be translated directly. The major traps: both the
X and Y registers are double-wide when compared to the equivalents in 6502; you
must use finesse in handling them.

ssound 1.asm Here is another example; it will cycle through all
lda #$10 the tones available when using the CB2 sound of the
sta $e8lUb the VIA (6522 chip) of SuperPET. (.cmd file, left.)
lda #$0f As noted earlier, the 'nop' instruc-
sta $e8la "sound 1" tion produces a rather quiet sound;
lda # 00 org $1000 there is, however, a 6809 instruction

SuperPET Gazette, Vol.I No.11 -178- ~ December 1983/January 1984

s main sound loop here "sound 1.b09" which causes enough delay to render a

loop sound audible. I suggest you look for
sta $e8u8 it (you'll learn a lot while looking); if nothing
nop seems to work, see the end of this column.
inca
until eq Now that we've examined the rudiments of producing
3 turn sound off sound in 6809 assembler, perhaps you will want to
lda #$00 try your hand at composing some simple songs. Try
sta $e8la creating a table of notes for the X register and
sta $e84b a table of delays for the Y register. The tabled
swi references will let you play sequences in turn to
end create a song.

The next two articles will be devoted to two trouble spots: structured pro-
programming statements, and determining the correct branch statement to use. The
topics will be presented without quizzes. Note: Your 6809 delay is: SYNC.

L0, 0.0 0 0 0 0 0 0.0 0 0.0 0. 0.0 .0 0 000 0.0.0.0.0.0.0.0.0.0.0.0.0000.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0

AN INDEX : COMING UP: This issue, we print an index of all Gazette issues
PRINTING APL, TWO NEW from No. 2 through this one. It is not page-numbered,
DISKS, A STARTER-PAK and can be removed from this issue if you want to file

it in a 3-ring binder. We'll keep on printing Vol. I
until we have enough pages to fill a 1.5-inch ring binder; then we'll start with
Vol. II. Next issue, we have excellent material by Terry Peterson and Reg Beck
on how to send the APL character set to MX80 and FX80 printers. AND: coming up,
Terry Peterson's and Gary Ratliff's extended monitors on an ISPUG utility disk,
together with a bunch of finished machine-language utility programs you can pick
and choose from, AND a new 'Starter-Pak' which tells beginners how to start us-
ing SuperPET, with a tutorial disk (all the things the manuals do not cover, and
which drove all of us up the wall when we first cranked up SuperPET). Both pack=-
ages are Jjust about finished; the Starter-Pak is designed especially for use in
schools, and may be copied by schools for use by teachers and students. Please
don't order either disk/manual until we announce they are ready.

L 0 0.0, 0,0, 0 0. 0. 0.0 0.0 0.0 0.0 0 0.0 0. 0,00 0,000 0,00 0. 0.0 0. 000 000 0000 00000000000
Prices, back copies, Vol. 1 (Postpaid), $ U.S.

No. 1: not available No. 4: $1.25 No. 7: $2.50 No. 10: $2.50
No. 2: $1.25 No. 5: $1.25 No. 8: $2.50 No. 11: $3.50
No. 3: $1.25 No. 6: $3.75 No. 9: $2.75

Send check to the Editor, PO Box 411, Hatteras, N.C. 27943. Add 30% to prices
above to cover additional postage if outside North America. Make checks to ISPUG

DUES IN U.S. $$ DOLLARS U.S. $$ U.S. $$ DOLLARS U.S. $$ U.S. DOLLARS $$
APPLICATION FOR MEMBERSHIP, INTERNATIONAL SUPERPET USERS' GROUP
(A non-profit organization of SuperPET Users)

Name : Disk Drive: Printer:

Address:

Street, PO Box City or Town State/Province/Country Postal ID#

For Canada and the U.S.: Enclose Annual Dues of $15:00 (U.S.) by check payable

to ISPUG. DUES ELSEWHERE: $25.00 U.S. Mail to: Paul V. Skipski, Secretary,
ISPUG, 4782 Boston Post Road, Pelham, N.Y. 10803, USA.

SuperPET Gazette, Vol.I No.11 -179- December 1983/January 1984

Newsletter published by the International SuperPET Users Group (ISPUG); a
non-profit association; purpose, interchange of useful data. Editorial offices
at PO Box 411, Hatteras, N.C. 27943. Secretary, Paul V. Skipski, 4782 Boston
Post Road, Pelham, N.Y. 10803. Membership applications, dues, and inquiries to
Mr. Skipski; newsletter material to Hatteras, attn: Dick Barnes, Editor. Super-
PET is a trademark of Commodore Business Machines, Inc.; WordPro a trademark of
Professional Software, Inc. Contents of this issue copyrighted by ISPUG, 1983,
except as otherwise shown; reprinting by permission only; SPUG members are auth-
orized to use the material. Enclose a self-addressed, postpaid envelope with all
material submitted and all inquiries requiring reply. Membership: $15.00 per yr.
U.S. in North America, $25.00 overseas and elsewhere. See enclosed application,

For all outside the U.S.: All nations members of the Postal Union offer
certificates good in the postage of any other country for a small charge. The
Union includes most nations of the world. Canadian members: send Canadian dimes
or quarters for postage, but no paper currency.

FIRST CLASS MAIL

SuperPET Gazette

PO Box 411

Hatteras, N.C. 27943
U.S.A.

First-Class Mail
in U.S. and Canada

